2019 Jan 30;10(1):486. doi: 10.1038/s41467-019-08420-w.

ATM phosphorylation of the actin-binding protein drebrin controls oxidation stress-resistance in mammalian neurons and C. elegans.

Author information

1
Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany. patricia.kreis@charite.de.
2
Leibniz-Research Institute for Molecular Pharmacology (FMP), Robert-Roessle-Straße 10, 13125, Berlin, Germany.
3
Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
4
Max Planck Institute for Brain Research, Max-von-Laue Strasse 4, 60438, Frankfurt, Germany.
5
Leibniz-Research Institute for Molecular Pharmacology (FMP), Robert-Roessle-Straße 10, 13125, Berlin, Germany. kirstein@fmp-berlin.de.
6
Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany. britta.eickholt@charite.de.
7
NeuroCure - Cluster of Excellence, Charité - Universitätsmedizin, 10117, Berlin, Germany. britta.eickholt@charite.de.

Abstract

Drebrin (DBN) regulates cytoskeletal functions during neuronal development, and is thought to contribute to structural and functional synaptic changes associated with aging and Alzheimer's disease. Here we show that DBN coordinates stress signalling with cytoskeletal dynamics, via a mechanism involving kinase ataxia-telangiectasia mutated (ATM). An excess of reactive oxygen species (ROS) stimulates ATM-dependent phosphorylation of DBN at serine-647, which enhances protein stability and accounts for improved stress resilience in dendritic spines. We generated a humanized DBN Caenorhabditis elegans model and show that a phospho-DBN mutant disrupts the protective ATM effect on lifespan under sustained oxidative stress. Our data indicate a master regulatory function of ATM-DBN in integrating cytosolic stress-induced signalling with the dynamics of actin remodelling to provide protection from synapse dysfunction and ROS-triggered reduced lifespan. They further suggest that DBN protein abundance governs actin filament stability to contribute to the consequences of oxidative stress in physiological and pathological conditions.

PMID:
 
30700723
 
PMCID:
 
PMC6353951
 
DOI:
 
10.1038/s41467-019-08420-w